Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

N, N^{\prime}-Dibenzylethane-1,2-diammonium dinitrate

Yu-Fen Liu, ${ }^{\text {a* }}$ Hai-Tao Xia, ${ }^{\text {a }}$ Da-Qi Wang, ${ }^{\text {b }}$ Shu-Ping Yang ${ }^{\text {a }}$ and Yong-Lu Meng ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang Jiangsu 222005, People's Republic of China, and ${ }^{\text {b }}$ College of Chemistry, and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
Correspondence e-mail: liu222005@hhit.edu.cn
Received 7 August 2007; accepted 10 August 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.009 \AA$;
R factor $=0.072 ; w R$ factor $=0.215 ;$ data-to-parameter ratio $=14.2$.

The cation of the title compound, $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{2+} .2 \mathrm{NO}_{3}{ }^{-}$, resides on a crystallographic inversion centre (at the mid-point of the central $\mathrm{C}-\mathrm{C}$ bond), with the nitrate anion on a general position. The ions are linked into chains by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and adjacent chains are further linked into sheets in the $a b$ plane.

Related literature

For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Liu et al. (2007); Xia et al. (2006, 2007).

Experimental

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}^{-} \\
& M_{r}=366.38 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=5.7889(15) \AA \\
& b=5.5654(14) \AA \\
& c=29.858(3) \AA \\
& \beta=91.638(3)^{\circ}
\end{aligned}
$$

Data collection

Siemens SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.945, T_{\text {max }}=0.991$

4707 measured reflections 1676 independent reflections 942 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.060$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072 \quad 118$ parameters
$w R\left(F^{2}\right)=0.215 \quad \mathrm{H}$-atom parameters constrained
$S=1.02$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3} \AA^{-3}$
1676 reflections
$\Delta \rho_{\text {min }}=-0.21 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.90	1.94	$2.825(3)$	168
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\mathrm{i}}$	0.90	2.39	$3.080(3)$	135
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1$	0.90	2.49	$3.075(3)$	124
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 2$	0.90	1.96	$2.869(3)$	177
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.58	$3.204(4)$	123
$\mathrm{C} 1-\mathrm{H} 1 D \cdots 3^{\text {iii }}$	0.97	2.53	$3.377(4)$	147
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{O}^{\mathrm{iii}}$	0.97	2.49	$3.367(4)$	150

Symmetry codes: (i) $x-1, y, z$; (ii) $x, y+1, z$; (iii) $x-1, y+1, z$.

Data collection: SMART (Siemens, 1996); cell refinement: SMART; data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GG3117).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Liu, Y.-F., Xia, H.-T., Yang, S.-P. \& Wang, D.-Q. (2007). Acta Cryst. E63, o1025-o1027.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens. (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Xia, H.-T., Liu, Y.-F., Yang, S.-P. \& Wang, D.-Q. (2006). Acta Cryst. E62, o5864-o5865.
Xia, H.-T., Liu, Y.-F., Yang, S.-P. \& Wang, D.-Q. (2007). Acta Cryst. E63, o239o240.

supplementary materials

Acta Cryst. (2007). E63, o3836 [doi:10.1107/S1600536807039736]

N, N^{\prime}-Dibenzylethane-1,2-diammonium dinitrate

Y.-F. Liu, H.-T. Xia, D.-Q. Wang, S.-P. Yang and Y.-L. Meng

Comment

We have recently reported crystal structures of diamine derivatives, for example, N, N '-bis(2-hydroxy-3-methoxybenzyl) ethane-1,2-diamine (Xia et al., 2006), N, N-bis(2-hydroxy-3-methoxybenzyl) propane-1,2-diamine (Xia et al., 2007). We have now continued our studied in this area with the title compound, (I). We compare the supramolecular aggregation in (I) with that in the analogous compound (II), a o-vanillin ethylenediamine nitrate (Liu et al., 2007). In (II), the asymmetric unit consists of one cation, two half-cations and four anions in the space group $P \overline{1}$, and the cations are linked into two chains by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds: the nitrate anions linking two chains into a sheet parallel to the [001] plane.

In (I), the asymmetric unit consists of one half-cation and one anion. The cation has a inversion centre of at the mid-point of the central C—C bond (Fig. 1). The bond lengths and angles are normal (Allen et al., 1987). The molecules are linked into a complex three-dimensional framework by a combination of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds (Table 2). However, the formation of the structure of (I) can be analysed in terms of two one-dimensional and one two-dimensional substructures.

In the first substructure, atoms N 1 in the molecule at (x, y, z) and $(1+x, y, z)$ act as hydrogen-bond donors to nitrate atoms $\mathrm{O} 1, \mathrm{O} 2$ and O 3 in the molecule at (x, y, z), respectively, and propagation by inversion and translation of these three hydrogen bonds generates a chain of rings parallel to the a axis direction, with $R_{4}{ }^{4}(18)$ rings (Bernstein et al., 1995) surrounds an $R_{4}{ }^{2}(14)$ ring centred at ($\left.\mathrm{n}, 1,0\right)(\mathrm{n}=$ zero or integer) (Fig. 2).

In the second substructure, atoms C 1 and C 2 in the molecule at $(x,-1+y, z)$ act as hydrogen-bond donors, respectively, to nitro atoms O 2 in the molecule at (x, y, z) and O 3 in the molecule at $(-1+x, y, z)$, at the same time, atom N 1 at (x, y, z) acts as a hydrogen-bond donor to nitro atom O 1 in the molecule at $(-1+x, y, z)$, so generating by a inversion centrosymmetric $R_{4}{ }^{4}(20)$ motif centred at $(1 / 2,1 / 2,0)$. Propagation by inversion and translation of these three hydrogen bonds generates a chain parallel to the b axis direction containing $R_{4}{ }^{4}(20)$ ring centred at $(1 / 2,1 / 2+\mathrm{n}, 0)(\mathrm{n}=$ zero or integer) (Fig. 3). The combination of the a and b chains generates a sheet runing parallel to [001] plane.

The action of the two-dimensional substructure is to link adjacent cations into [100] sheets. Atom C6 in the molecule at (x, y, z) acts as a hydrogen-bond donor to $C g$ (aryl ring $\mathrm{C} 3-\mathrm{C} 8$) in the molecule at ($1-x,-1 / 2+y, 1 / 2-z$), so forming a sheet running parallel to the [100] plane, and geneated by the 2_{1} screw axis along $(1 / 2, y, 1 / 4)$ and by the n-glide plane at $y=$ 1/2 (Fig. 4). The combination of the [001] and [100] sheets suffices to generate the three-dimensional framework structure. Hence it can be seen that the direction specific intermolecular interactions in compounds (I) and (II) are different, leading to markedly different supramolecular structures.

supplementary materials

Experimental

To a solution of N, N^{\prime}-dibenzylethane-1,2-diamine (2 mmol) in methanol (20 ml) was added a solution of zinc(II) nitrate (1 mmol) in methanol $(10 \mathrm{ml})$. The mixed solution was stirred for 4 h and then filtered. The solution was allowed to stand, slowly producing crystals of (I).

Refinement

The space group was uniquely assigned from the systematic absences. All H atoms were located in difference Fourier maps. H atoms bonded to C and N atoms were treated as riding atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ (aryl), $0.97 \AA$ (methylene), $\mathrm{N} — \mathrm{H}$ distances of $0.90 \AA$ (amine), and with $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, N)$ (aryl, methylene, amine).

Figures

Fig. 3. A large part of the crystal structure of (I), showing the formation of a hydrogen-bonded chain built from $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$. For clarity, H atomes not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [symmetry code: (B) $x,-1+y, z,(\mathrm{C})-1+x, y, z]$.

Fig. 4. The crystal structure of (I). Neighboring chains are connected by $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds. For clarty, H atomes not involved in the hydrogen bonding have been omitted. Dashed lines indicate hydrogen bonds. [symmetry code: (D) $1-x,-1 / 2+y, 1 / 2-z$].

N, N^{\prime}-Dibenzylethane-1,2-diammonium dinitrate

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{NO}_{3}{ }^{-}$
$M_{r}=366.38$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=5.7889(15) \AA$
$b=5.5654(14) \AA$
$c=29.858(3) \AA$
$\beta=91.638(3)^{\circ}$
$V=961.5(4) \AA^{3}$
$Z=2$
$F_{000}=388$
$D_{\mathrm{x}}=1.265 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 995 reflections
$\theta=2.7-22.8^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colourless
$0.58 \times 0.23 \times 0.09 \mathrm{~mm}$

Data collection

Siemens SMART 1000 CCD area-detector diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293$ (2) K
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.945, T_{\text {max }}=0.991$

1676 independent reflections
942 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.060$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=1.4^{\circ}$
$h=-6 \rightarrow 6$
$k=-6 \rightarrow 6$

supplementary materials

4707 measured reflections
$l=-31 \rightarrow 35$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.072$
$w R\left(F^{2}\right)=0.215$
$S=1.02$
1676 reflections
118 parameters
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.1189 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.37$ e \AA^{-3}
$\Delta \rho_{\min }=-0.21$ e \AA^{-3}
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
N1	$0.4744(4)$	$0.9458(4)$	$0.06168(7)$	$0.0488(7)$
H1A	0.3281	0.8909	0.0607	0.059^{*}
H1B	0.5690	0.8174	0.0626	0.059^{*}
N2	$0.9771(5)$	$0.6263(5)$	$0.05954(9)$	$0.0599(8)$
O1	$0.9957(4)$	$0.8469(4)$	$0.05704(9)$	$0.0742(8)$
O2	$0.7799(5)$	$0.5400(4)$	$0.06156(10)$	$0.0882(9)$
O3	$1.1532(5)$	$0.5046(4)$	$0.05864(12)$	$0.1054(11)$
C1	$0.5158(5)$	$1.0821(5)$	$0.01998(9)$	$0.0478(8)$
H1C	0.6714	1.1468	0.0209	0.057^{*}
H1D	0.4081	1.2154	0.0174	0.057^{*}
C2	$0.5114(6)$	$1.0864(5)$	$0.10331(11)$	$0.0617(9)$
H2A	0.4219	1.2336	0.1014	0.074^{*}
H2B	0.6733	1.1295	0.1066	0.074^{*}
C3	$0.4409(7)$	$0.9453(7)$	$0.14330(12)$	$0.0719(10)$
C4	$0.2417(10)$	$0.9825(12)$	$0.16382(17)$	$0.132(2)$
H4	0.1406	1.1026	0.1540	0.158^{*}
C5	$0.1848(15)$	$0.827(2)$	$0.2029(2)$	$0.161(3)$

sup-4

H5	0.0499	0.8447	0.2187	0.194^{*}
C6	$0.347(2)$	$0.656(2)$	$0.2133(3)$	$0.159(3)$
H6	0.3149	0.5565	0.2374	0.191^{*}
C7	$0.5403(19)$	$0.6153(13)$	$0.1939(2)$	$0.152(3)$
H7	0.6420	0.4952	0.2034	0.182^{*}
C8	$0.5840(11)$	$0.7599(9)$	$0.15861(14)$	$0.1118(17)$
H8	0.7199	0.7332	0.1435	0.134^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	$0.0431(14)$	$0.0402(12)$	$0.0633(16)$	$-0.0065(10)$	$0.0058(11)$	$0.0016(12)$
N2	$0.0537(18)$	$0.0480(16)$	$0.0781(19)$	$-0.0011(14)$	$0.0037(13)$	$-0.0052(14)$
O1	$0.0509(15)$	$0.0458(13)$	$0.126(2)$	$-0.0046(10)$	$0.0056(13)$	$0.0070(13)$
O2	$0.0651(17)$	$0.0567(14)$	$0.143(2)$	$-0.0189(13)$	$0.0094(15)$	$0.0008(15)$
O3	$0.0756(19)$	$0.0674(16)$	$0.174(3)$	$0.0276(14)$	$0.0076(18)$	$-0.0031(17)$
C1	$0.0504(17)$	$0.0350(14)$	$0.0584(18)$	$-0.0032(13)$	$0.0059(14)$	$0.0043(13)$
C2	$0.075(2)$	$0.0476(17)$	$0.063(2)$	$-0.0073(16)$	$0.0040(16)$	$-0.0075(16)$
C3	$0.074(3)$	$0.082(3)$	$0.060(2)$	$-0.023(2)$	$0.0055(19)$	$-0.009(2)$
C4	$0.109(4)$	$0.205(6)$	$0.082(3)$	$-0.028(4)$	$0.033(3)$	$-0.033(4)$
C5	$0.123(6)$	$0.261(10)$	$0.102(5)$	$-0.062(6)$	$0.040(4)$	$-0.034(6)$
C6	$0.177(8)$	$0.191(8)$	$0.112(5)$	$-0.077(7)$	$0.036(6)$	$-0.005(5)$
C7	$0.238(9)$	$0.132(5)$	$0.085(4)$	$-0.005(6)$	$0.004(5)$	$0.021(4)$
C8	$0.176(5)$	$0.095(3)$	$0.064(3)$	$-0.009(3)$	$0.003(3)$	$0.015(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 2$	$1.479(4)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.484(3)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.9000
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$	0.9000
$\mathrm{~N} 2-\mathrm{O} 3$	$1.225(3)$
$\mathrm{N} 2-\mathrm{O} 1$	$1.235(3)$
$\mathrm{N} 2-\mathrm{O} 2$	$1.241(3)$
$\mathrm{C} 1-\mathrm{C} 1$	$1.510(6)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	0.9700
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	0.9700
$\mathrm{C} 2-\mathrm{C} 3$	$1.496(5)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$114.3(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	108.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	108.7
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	108.7
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	108.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	107.6
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{O} 1$	$118.4(3)$
$\mathrm{O} 3-\mathrm{N} 2-\mathrm{O} 2$	$123.6(3)$
$\mathrm{O} 1-\mathrm{N} 2-\mathrm{O} 2$	$118.0(3)$

$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9700
$\mathrm{C} 3-\mathrm{C} 4$	$1.337(6)$
$\mathrm{C} 3-\mathrm{C} 8$	$1.392(6)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.498(10)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9300
$\mathrm{C} 5-\mathrm{C} 6$	$1.367(11)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{C} 7$	$1.294(11)$
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{C} 8$	$1.355(8)$
$\mathrm{C} 7-\mathrm{H} 7$	0.9300
$\mathrm{C} 8-\mathrm{H} 8$	0.9300
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8$	$118.5(5)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.9(5)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$118.6(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.6(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.7
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.7
C6-C5-C4	$114.5(7)$
C6-C5-H5	122.7

supplementary materials

$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$109.5(3)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.8
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.8
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.8
$\mathrm{C} 1^{\mathrm{i}}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	109.8
$\mathrm{H} 1 \mathrm{C}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{D}$	108.2
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{C} 3$	$110.9(2)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.5
$\mathrm{~N} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.5
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 1^{\mathrm{i}}$	$177.3(3)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$173.6(3)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-102.3(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8$	$74.7(4)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$1.4(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$178.4(4)$
Symmetry codes: (i) $-x+1,-y+2,-z$.	

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	122.7
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$128.0(8)$
$\mathrm{C} 7-\mathrm{C} 6-\mathrm{H} 6$	116.0
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	116.0
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$115.4(8)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{H} 7$	122.3
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{H} 7$	122.3
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$124.9(6)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{H} 8$	117.5
$\mathrm{C} 3-\mathrm{C} 8-\mathrm{H} 8$	117.5
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-0.7(9)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$0.3(12)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8$	$-0.6(12)$
$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 3$	$1.3(9)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-1.8(7)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 8-\mathrm{C} 7$	$-178.9(5)$

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.90	1.94	$2.825(3)$	168
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.90	2.39	$3.080(3)$	135
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1$	0.90	2.49	$3.075(3)$	124
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 2$	0.90	1.96	$2.869(3)$	177
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.97	2.58	$3.204(4)$	123
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{D} \cdots \mathrm{O}^{\mathrm{iv}}$	0.97	2.53	$3.377(4)$	147
$\mathrm{C} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iv}}$	0.97	2.49	$3.367(4)$	150

Symmetry codes: (ii) $x-1, y, z$; (iii) $x, y+1, z$; (iv) $x-1, y+1, z$.

supplementary materials

Fig. 1

Fig. 2

Fig. 3

supplementary materials

Fig. 4

